
Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 1 -

Announcements
Both TAs (Ron Tal and Serene Wong) will be present in the PRISM lab (CSEB 1006)
tomorrow, Tues Feb 2 from 14:30-16:30 for the scheduled practice lab. So you will
NOT find Ron in CSEB 2013 during his office hour (Tues 14:30-15:30) this week.

Assignment 1. I have updated the comments for the test programs for each question
to indicate the correct output.

Assignment 1, Question 2: Clarification on error-checking. Your implementation
need only support operands that are one-character lower-case letters (no numeric

constants), and the operators +, -, * and /, as well as round brackets (and). Spaces
between characters in the infix expression should be ignored. Any other symbol
should generate an InvalidInfixExpressionStringException. However, you do NOT
have to detect other kinds of invalid infix expression strings: you can assume the
expressions are valid.

Assignment 1, Question 5: The interface for push in Class minStack is public E
push(E element). This is different from the push ADT defined by the book and in my

slides, which does not return anything (i.e., public void push(E element)). I am
following here the Stack class provided by java.util. Here, push returns the element
just pushed onto the stack, i.e., element in push(E element). Please follow this
convention.

The statement of Assignment 1, Question 2 was a bit misleading. The last

expression should read z x y + *, not x y + z *.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 2 -

Maps, Hash Tables and Dictionaries

Chapter 9

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 3 -

Maps

A map models a searchable collection of key-value
entries

The main operations of a map are for searching,
inserting, and deleting items

Multiple entries with the same key are not allowed

Applications:

address book

student-record database

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 4 -

The Map ADT

Map ADT methods:

get(k): if the map M has an entry with key k, return its associated
value; else, return null

put(k, v): insert entry (k, v) into the map M; if key k is not already
in M, then return null; else, return old value associated with k

remove(k): if the map M has an entry with key k, remove it from
M and return its associated value; else, return null

size(), isEmpty()

keys(): return an iterator of the keys in M

values(): return an iterator of the values in M

entries(): returns an iterator of the entries in M

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 5 -

Example

Operation Output M

isEmpty() true Ø

put(5,A) null (5,A)

put(7,B) null (5,A),(7,B)

put(2,C) null (5,A),(7,B),(2,C)

put(8,D) null (5,A),(7,B),(2,C),(8,D)

put(2,E) C (5,A),(7,B),(2,E),(8,D)

get(7) B (5,A),(7,B),(2,E),(8,D)

get(4) null (5,A),(7,B),(2,E),(8,D)

get(2) E (5,A),(7,B),(2,E),(8,D)

size() 4 (5,A),(7,B),(2,E),(8,D)

remove(5) A (7,B),(2,E),(8,D)

remove(2) E (7,B),(8,D)

get(2) null (7,B),(8,D)

isEmpty() false (7,B),(8,D)

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 6 -

Comparison to java.util.Map

Map ADT Methods java.util.Map Methods

 size() size()

 isEmpty() isEmpty()

 get(k) get(k)

 put(k,v) put(k,v)

 remove(k) remove(k)

 keys() keySet()

 values() values()

 entries() entrySet()

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 7 -

A Simple List-Based Map

We could implement a map using an

unsorted list

We store the entries of the map in a doubly-linked

list S, in arbitrary order

trailer header nodes/positions

entries

9 c 6 b 5 a 8 d

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 8 -

The get(k) Algorithm

Algorithm get(k):

 B = S.positions() {B is an iterator of the positions in S}

 while B.hasNext() do

 p = B.next() // the next position in B

 if p.element().key() = k then

 return p.element().value()

 return null {there is no entry with key equal to k}

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 9 -

The put(k,v) Algorithm

Algorithm put(k,v):

B = S.positions()

while B.hasNext() do

 p = B.next()

 if p.element().key() = k then

 t = p.element().value()

 B.replace(p,(k,v))

 return t {return the old value}

S.insertLast((k,v))

n = n + 1 {increment variable storing number of entries}

return null {there was no previous entry with key equal to k}

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 10 -

The remove(k) Algorithm

Algorithm remove(k):

B =S.positions()

while B.hasNext() do

 p = B.next()

 if p.element().key() = k then

 t = p.element().value()

 S.remove(p)

 n = n – 1 {decrement number of entries}

 return t {return the removed value}

return null {there is no entry with key equal to k}

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 11 -

Performance of a List-Based Map

Performance:

put, get and remove take O(n) time since in the worst case

(the item is not found) we traverse the entire sequence to

look for an item with the given key

The unsorted list implementation is effective only for

small maps

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 12 -

Hash Tables

A hash table is a data structure that can be used to

make map operations faster.

While worst-case is still O(n), average case is typically

O(1).

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 13 -

Applications of Hash Tables

databases

compilers

browser caches

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 14 -

Hash Functions and Hash Tables

A hash function h maps keys of a given type to integers

in a fixed interval [0, N 1]

Example:
 h(x) = x mod N

is a hash function for integer keys

The integer h(x) is called the hash value of key x

A hash table for a given key type consists of

Hash function h

Array (called table) of size N

When implementing a map with a hash table, the goal

is to store item (k, o) at index i = h(k)

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 15 -

Example

We design a hash table for

a map storing entries as

(SIN, Name), where SIN
(social insurance number) is

a nine-digit positive integer

Our hash table uses an

array of size N = 10,000 and

the hash function

h(x) = last four digits of SIN x

Ø

Ø

Ø

Ø

0

1

2

3

4

9997

9998

9999

…

451-229-0004

981-101-0002

200-751-9998

025-612-0001

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 16 -

Hash Functions

A hash function is usually specified as the composition of

two functions:

 Hash code:

 h1: keys integers

 Compression function:

 h2: integers [0, N 1]

The hash code is applied first, and the compression

function is applied next on the result, i.e.,

 h(x) = h2(h1(x))

The goal of the hash function is to “disperse” the keys in

an apparently random way

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 17 -

Hash Codes
Memory address:

We reinterpret the memory address of the key object as an integer
(default hash code of all Java objects)

Does not work well when copies of the same object may be stored at
different locations.

Integer cast:

We reinterpret the bits of the key as an integer

Suitable for keys of length less than or equal to the number of bits of
the integer type (e.g., byte, short, int and float in Java)

Component sum:

We partition the bits of the key into components of fixed length (e.g.,

16 or 32 bits) and we sum the components (ignoring overflows)

Suitable for numeric keys of fixed length greater than or equal to the

number of bits of the integer type (e.g., long and double in Java)

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 18 -

Problems with Component Sum Hash Codes

Hashing works when

the number of different common keys is small relative to the

hashing space (e.g., 232 for a 32-bit hash code).

the hash codes for common keys are well-distibuted (do not

collide) in this space.

Component Sum codes ignore the ordering of the

components.

e.g., using 8-bit ASCII components, ‘stop’ and ‘pots’ yields the

same code.

Since common keys are often anagrams of each other,

this is often a bad idea!

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 19 -

Polynomial Hash Codes

Polynomial accumulation:

We partition the bits of the key into a sequence of components of fixed
length (e.g., 8, 16 or 32 bits)
 a0 a1 … an 1

We evaluate the polynomial

 p(z) = a0 + a1 z + a2 z
2 + … + an 1z

n 1 at a fixed value z, ignoring overflows

Especially suitable for strings (e.g., the choice z = 33 gives at most 6
collisions on a set of 50,000 English words)

Polynomial p(z) can be evaluated in O(n) time using Horner’s rule:

The following polynomials are successively computed, each from the previous
one in O(1) time

 p0(z) = an 1

 pi (z) = an i 1 + zpi 1(z) (i = 1, 2, …, n 1)

We have p(z) = pn 1(z)

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 20 -

Compression Functions

Division:

h2 (y) = y mod N

The size N of the hash table is usually chosen to be a prime

Multiply, Add and Divide (MAD):

h2 (y) = (ay + b) mod N

a and b are nonnegative integers such that

 a mod N 0

Otherwise, every integer would map to the same value b

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 21 -

Collision Handling

Collisions occur when different elements are mapped to

the same cell

Separate Chaining:

Let each cell in the table point to a linked list of entries that map

there

Separate chaining is simple, but requires additional memory

outside the table
Ø

Ø

Ø

0

1

2

3

4 451-229-0004 981-101-0004

025-612-0001

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 22 -

Map Methods with Separate Chaining

Delegate operations to a list-based map at each cell:

Algorithm get(k):

Output: The value associated with the key k in the map, or null if there is no
entry with key equal to k in the map

return A[h(k)].get(k) {delegate the get to the list-based map at A[h(k)]}

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 23 -

Map Methods with Separate Chaining

Delegate operations to a list-based map at each cell:

Algorithm put(k,v):

Output: Store the new (key, value) pair. If there is an existing entry with key
equal to k, return the old value; otherwise, return null

t = A[h(k)].put(k,v) {delegate the put to the list-based map at A[h(k)]}

if t = null then {k is a new key}

 n = n + 1

return t

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 24 -

Map Methods with Separate Chaining

Delegate operations to a list-based map at each cell:

Algorithm remove(k):

Output: The (removed) value associated with key k in the map, or null if there

 is no entry with key equal to k in the map

t = A[h(k)].remove(k) {delegate the remove to the list-based map at A[h(k)]}

if t null then {k was found}

 n = n - 1

return t

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 25 -

Linear Probing

Open addressing: the colliding

item is placed in a different cell of

the table

Linear probing handles collisions

by placing the colliding item in the

next (circularly) available table cell

Each table cell inspected is

referred to as a “probe”

Colliding items lump together, so

that future collisions cause a longer

sequence of probes

Example:

h(x) = x mod 13

Insert keys 18, 41, 22, 44,

59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 26 -

Get with Linear Probing

Consider a hash table A of

length N that uses linear

probing

get(k)

We start at cell h(k)

We probe consecutive

locations until one of the

following occurs

An item with key k is found,
or

An empty cell is found, or

N cells have been
unsuccessfully probed

Algorithm get(k)

 i h(k)

 p 0

 repeat

 c A[i]

 if c = Ø

return null

 else if c.key () = k

 return c.element()

 else

 i (i + 1) mod N

 p p + 1

until p = N

return null

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 27 -

Remove with Linear Probing

Suppose we receive a remove(44)

message.

What problem arises if we simply

remove the key = 44 entry?

Example:

h(x) = x mod 13

Insert keys 18, 41, 22, 44,

59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73

k h(k) i

18 5 5

41 2 2

22 9 9

44 5 6

59 7 7

32 6 8

31 5 10

73 8 11

Ø

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 28 -

Removal with Linear Probing
To address this problem, we introduce a special object, called

AVAILABLE , which replaces deleted elements

AVAILABLE has a null key

No changes to get(k) are required.
Algorithm get(k)

 i h(k)

 p 0

 repeat

 c A[i]

 if c = Ø

return null

 else if c.key () = k

 return c.element()

 else

 i (i + 1) mod N

 p p + 1

until p = N

return null

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 29 -

Updates with Linear Probing
remove(k)

We search for an entry with key k

If such an entry (k, o) is found, we replace it with the special item

AVAILABLE and we return element o

Else, we return null

put(k, o)

We throw an exception if the table is full

We start at cell h(k)

We probe consecutive cells until one of the following occurs

A cell i is found that is either empty or stores AVAILABLE, or

N cells have been unsuccessfully probed

We store entry (k, o) in cell i

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 30 -

Double Hashing

Double hashing uses a secondary hash function h’(k) in addition

to the primary hash function h(x).

Suppose that the primary hashing i=h(k) leads to a collision.

We then iteratively probe the locations

 (i + jh’(k)) mod N for j = 0, 1, … , N - 1

The secondary hash function h’(k) cannot have zero values

The table size N must be a prime to allow probing of all the cells

Common choice of secondary hash function h’(k):

h’(k) = q - k mod q, where

q < N

q is a prime

The possible values for h’(k) are

 1, 2, … , q

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 31 -

Consider a hash table

storing integer keys that

handles collision with
double hashing

N = 13

h(k) = k mod 13

h’(k) = 7 k mod 7

Insert keys 18, 41, 22,

44, 59, 32, 31, 73

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 32 -

Performance of Hashing

In the worst case, searches, insertions and removals on a hash table
take O(n) time

The worst case occurs when all the keys inserted into the map collide

The load factor = n/N affects the performance of a hash table

For separate chaining, performance is typically good for < 0.9.

For open addressing , performance is typically good for < 0.5.

java.util.HashMap maintains < 0.75

Separate chaining is typically as fast or faster than open
addressing.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 33 -

Rehashing

When the load factor exceeds threshold, the table must

be rehashed.

A larger table is allocated (typically at least double the size).

A new hash function is defined.

All existing entries are copied to this new table using the new

hash function.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 34 -

Java Example (MAD hash function)
 /** Doubles the size of the hash table and rehashes all the entries. */

 protected void rehash() {

 capacity = 2*capacity;

 Entry<K,V>[] old = bucket;

 bucket = (Entry<K,V>[]) new Entry[capacity]; // new bucket is twice as big

 java.util.Random rand = new java.util.Random();

 scale = rand.nextInt(prime-1) + 1; // new hash scaling factor

 shift = rand.nextInt(prime); // new hash shifting factor

 for (int i=0; i<old.length; i++) {

 Entry<K,V> e = old[i];

 if ((e != null) && (e != AVAILABLE)) { // if we have a valid entry

 int j = - 1 - findEntry(e.getKey()); // find the appropriate spot

 bucket[j] = e; // copy into the new array

 }

 }

}

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 35 -

DICTIONARIES

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 36 -

Dictionary ADT
The dictionary ADT models a
searchable collection of key-
element entries

The main operations of a
dictionary are searching,
inserting, and deleting items

Multiple items with the same key
are allowed

Applications:

word-definition pairs

credit card authorizations

DNS mapping of host names
(e.g., datastructures.net) to
internet IP addresses (e.g.,
128.148.34.101)

Dictionary ADT methods:

find(k): if the dictionary
has at least one entry with
key k, returns one of
them, else, returns null

findAll(k): returns an
iterator of all entries with
key k

insert(k, o): inserts and
returns the entry (k, o)

remove(e): remove the
entry e from the dictionary

entries(): returns an
iterator of the entries in
the dictionary

size(), isEmpty()

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 37 -

Example

Operation Output Dictionary

insert(5,A) (5,A) (5,A)

insert(7,B) (7,B) (5,A),(7,B)

insert(2,C) (2,C) (5,A),(7,B),(2,C)

insert(8,D) (8,D) (5,A),(7,B),(2,C),(8,D)

insert(2,E) (2,E) (5,A),(7,B),(2,C),(8,D),(2,E)

find(7) (7,B) (5,A),(7,B),(2,C),(8,D),(2,E)

find(4) null (5,A),(7,B),(2,C),(8,D),(2,E)

find(2) (2,C) (5,A),(7,B),(2,C),(8,D),(2,E)

findAll(2) (2,C),(2,E) (5,A),(7,B),(2,C),(8,D),(2,E)

size() 5 (5,A),(7,B),(2,C),(8,D),(2,E)

remove(find(5)) (5,A) (7,B),(2,C),(8,D),(2,E)

find(5) null (7,B),(2,C),(8,D),(2,E)

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 38 -

A List-Based Dictionary

A log file or audit trail is a dictionary implemented by means of an

unsorted sequence

We store the items of the dictionary in a sequence (based on a doubly-
linked list or array), in arbitrary order

Performance:

insert takes O(1) time since we can insert the new item at the beginning or
at the end of the sequence

find and remove take O(n) time since in the worst case (the item is not
found) we traverse the entire sequence to look for an item with the given

key

The log file is effective only for dictionaries of small size or for

dictionaries on which insertions are the most common operations, while

searches and removals are rarely performed (e.g., historical record of

logins to a workstation)

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 39 -

The findAll(k) Algorithm

Algorithm findAll(k):

Input: A key k

Output: An iterator of entries with key equal to k

Create an initially-empty list L

B = D.entries()

while B.hasNext() do

 e = B.next()

 if e.key() = k then

 L.insertLast(e)

return L.elements()

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 40 -

The insert and remove Methods
Algorithm insert(k,v):

Input: A key k and value v

Output: The entry (k,v) added to D

Create a new entry e = (k,v)

S.insertLast(e) {S is unordered}

return e

Algorithm remove(e):

Input: An entry e

Output: The removed entry e or null if e was not in D

{We don’t assume here that e stores its location in S}

B = S.positions()

while B.hasNext() do

 p = B.next()

 if p.element() = e then

 S.remove(p)

 return e

return null {there is no entry e in D}

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 41 -

Hash Table Implementation

We can also create a hash-table dictionary

implementation.

If we use separate chaining to handle collisions, then

each operation can be delegated to a list-based

dictionary stored at each hash table cell.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 42 -

Dictionaries & Ordered Search Tables

If keys obey a total order relation, can represent dictionary as an

ordered search table stored in an array.

 Can then support a fast find(k) using binary search.

at each step, the number of candidate items is halved

terminates after a logarithmic number of steps

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 43 -

Ordered Search Tables

Performance:

find takes O(log n) time, using binary search

insert takes O(n) time since in the worst case we have to shift n

items to make room for the new item

remove takes O(n) time since in the worst case we have to shift n

items to compact the items after the removal

A search table is effective only for dictionaries of small size or

for dictionaries on which searches are the most common

operations, while insertions and removals are rarely performed

(e.g., credit card authorizations)

Binary search can interact poorly with the memory hierarchy (i.e.

caching), because of its random-access nature. A common

technique is to abandon binary searching for linear searching as

soon as the size of the remaining span falls below a small value

such as 8 or 16 or even more in recent computers.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 44 -

Define Problem: Binary Search

PreConditions

Key 25

Sorted List

PostConditions

Find key in list (if there).

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 45 -

More on Binary Search

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 46 -

Define Loop Invariant

Maintain a sublist.

If the key is contained in the original list, then the key is

contained in the sublist.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 47 -

Define Step

Cut sublist in half.

Determine which half the key would be in.

Keep that half.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key mid,

then key is in

left half.

If key > mid,

then key is in

right half.

mid

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 48 -

Define Step

It is faster not to check if the middle element is the key.

Simply continue.

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key mid,

then key is in

left half.

If key > mid,

then key is in

right half.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 49 -

Make Progress

The size of the list becomes smaller.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

79 km

75 km

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 50 -

Ending Algorithm

If the key is contained in the
original list,

 then the key is contained in the
sublist.

Sublist contains one element.

Exit

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

0 km

• If the key is
contained in the
original list,

 then the key is at
this location.

key 25

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 51 -

If key not in original list

If the key is contained in the

original list,

 then the key is contained in the

sublist.

• Loop invariant true,
even if the key is not
in the list.

• If the key is contained in
the original list, then the
key is at this location.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

key 24

• Conclusion still solves the
problem.

 Simply check this one location
for the key.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 52 -

Running Time

The sublist is of size n, n/2,
n/4,

n/8,…,1

Each step O(1) time.

Total = O(log n)

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key mid,

then key is in

left half.

If key > mid,

then key is in

right half.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 53 -

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 54 -

Simple, right?

Although the concept is simple, binary search is

notoriously easy to get wrong.

Why is this?

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 55 -

The Devil in the Details

The basic idea behind binary search is easy to grasp.

It is then easy to write pseudocode that works for a

‘typical’ case.

Unfortunately, it is equally easy to write pseudocode that

fails on the boundary conditions.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 56 -

The Devil in the Details

or

What condition will break the loop invariant?

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 57 -

The Devil in the Details

key 36

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

mid

Bug!!

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 58 -

The Devil in the Details

OK OK Not OK!!

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 59 -

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

The Devil in the Details

or

Shouldn’t matter, right?

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 60 -

6 74

The Devil in the Details

key 25

95 91 88 83 72 60 53 51 49 43 36 25 21 21 18 13 5 3

If key mid,

then key is in

left half.

If key > mid,

then key is in

right half.

mid

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 61 -

25 18 74

The Devil in the Details

key 25

95 91 88 83 72 60 53 51 49 43 36 21 21 13 6 5 3

If key mid,

then key is in

left half.

If key > mid,

then key is in

right half.

mid

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 62 -

25 13 74

The Devil in the Details

key 25

95 91 88 83 72 60 53 51 49 43 36 21 21 18 6 5 3

If key mid,

then key is in

left half.

If key > mid,

then key is in

right half.

•Another bug!
No progress

toward goal:

Loops Forever!
mid

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 63 -

The Devil in the Details

OK OK Not OK!!

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 64 -

How Many Possible Algorithms?

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 65 -

Alternative Algorithm: Less Efficient but More Clear

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 66 -

Moral

Use the loop invariant method to think about algorithms.

Be careful with your definitions.

Be sure that the loop invariant is always maintained.

Be sure progress is always made.

Having checked the ‘typical’ cases, pay particular

attention to boundary conditions and the end game.

Sometimes it is worth paying a little in efficiency for clear,

correct code.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 67 -

A volunteer, please.

Card Trick

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 68 -

Loop Invariants
for

Iterative Algorithms

A Third

Search Example:

A Card Trick

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 69 -

Pick a Card

Done

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 70 -

Loop Invariant:

The selected card is one
of these.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 71 -

Which
column?

left

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 72 -

Loop Invariant:

The selected card is one
of these.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 73 -

Selected column is placed

in the middle

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 74 -

I will rearrange the cards

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 75 -

Relax Loop Invariant:

I will remember the same
about each column.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 76 -

Which
column?

right

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 77 -

Loop Invariant:

The selected card is one
of these.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 78 -

Selected column is placed

in the middle

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 79 -

I will rearrange the cards

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 80 -

Which
column?

left

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 81 -

Loop Invariant:

The selected card is one
of these.

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 82 -

Selected column is placed

in the middle

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 83 -

Here is your

card.

Wow!

Last Updated: 2/8/10 8:50 PM
CSE 2011

Prof. J. Elder
- 84 -

Ternary Search

• How many iterations are required to guarantee

success?

Loop Invariant: selected card in central subset of

cards

